Stem Cells Can Restore Movement in Paralyzed Patients

By Pat Anson, PNN Editor

Stem cells derived from body fat can improve sensation and restore movement in patients paralyzed by a severe spinal cord injury, according to a small clinical trial at the Mayo Clinic. One man who was paralyzed from the neck down after a surfing accident is now able to walk again after getting stem cell therapy.

"This study documents the safety and potential benefit of stem cells and regenerative medicine," first author Mohamad Bydon, MD, a Mayo Clinic neurosurgeon, said in a press release. "In spinal cord injury, even a mild improvement can make a significant difference in that patient's quality of life."

The ten patients who participated in the Phase 1 study had adipose (fat) stem calls removed from their abdomen or thigh. After several weeks, 100 million new mesenchymal stem cells (MSCs) grown in a laboratory petri dish were injected into each patient’s lumbar spine. It’s believed the cells then migrate to the injured part of the spine. Participants were regularly followed for the next two years to assess their response to treatment.

The study findings, published in the journal Nature Communications, show that 7 of the 10 patients showed improvement based on the American Spinal Injury Association’s Impairment Scale. Improvements included increased sensation when tested with a pinprick or light touch, increased muscle strength, and the recovery of voluntary bowel function. Three patients showed significant improvement, four had a moderate improvement, and three had no response.

This Mayo Clinic video shows how the process works:

Perhaps the most dramatic improvement was in Chris Barr, a California man who was paralyzed in 2017 while surfing near San Francisco. He broke his neck in eight places when his head hit the ocean floor.

Barr was the first person enrolled in the Mayo study. Eighteen months after the stem cell injection, Barr was able to walk again and continues to show improvement in his mobility and quality of life.

"I never dreamed I would have a recovery like this," Barr told ABC News. "I can feed myself. I can walk around. I can do day-to-day independent activities."  

No serious adverse events were reported from the stem cell treatment. The most common side effects were headaches and musculoskeletal pain that went away after over-the-counter medications were taken.

Since safety is the primary goal of a Phase 1 study, further research will be needed to assess the improvements in movement and sensation. The use of fat-derived stem cells for spinal cord injury is considered experimental by the Food and Drug Administration.

According to the National Spinal Cord Injury Statistical Center, nearly 300,000 Americans currently suffer from a spinal cord injury, costing the healthcare system over $40 billion annually.  The estimated lifetime cost for each patient can reach millions of dollars.

The spinal cord has limited ability to repair itself. Patients who suffer a significant injury typically experience most of their recovery in the first six to 12 months. Improvements generally stop 12 to 24 months after an injury. Only about 5% of people who are paralyzed can expect to regain any feeling or movement.

"For years, treatment of spinal cord injury has been limited to supportive care, more specifically stabilization surgery and physical therapy," Dr. Bydon says. "Many historical textbooks state that this condition does not improve. In recent years, we have seen findings from the medical and scientific community that challenge prior assumptions. This research is a step forward toward the ultimate goal of improving treatments for patients."